8,541 research outputs found

    The Weyl tensor two-point function in de Sitter spacetime

    Get PDF
    We present an expression for the Weyl-Weyl two-point function in de Sitter spacetime, based on a recently calculated covariant graviton two-point function with one gauge parameter. We find that the Weyl-Weyl two-point function falls off with distance like r^{-4}, where r is spacelike coordinate separation between the two points.Comment: 9 pages, no figure

    Stability of Massive Cosmological Gravitons

    Get PDF
    We analyze the physics of massive spin 2 fields in (A)dS backgrounds and exhibit that: The theory is stable only for masses m^2 >= 2\Lambda/3, where the conserved energy associated with the background timelike Killing vector is positive, while the instability for m^2<2\Lambda/3 is traceable to the helicity 0 energy. The stable, unitary, partially massless theory at m^2=2\Lambda/3 describes 4 propagating degrees of freedom, corresponding to helicities (+/-2,+/-1) but contains no 0 helicity excitation.Comment: 13 pages, LaTeX, version to appear in Phys. Lett.

    Particle Horizon and Warped Phenomenology

    Full text link
    Giant resonances of gravity Kaluza-Klein modes (with tensor couplings) in high energy collisions are expected in the Randall-Sundrum orbifold model that incorporates a plausible solution to the hierarchy problem. When the model is extended to incorporate an exponentially small 4-D cosmological constant, the KK spectrum becomes continuous, even in the compactified case. This is due to the presence of a particle horizon, which provides a way to evade Weinberg's argument of the need of fine-tuning to get a very small cosmological constant.Comment: 10 pages, 1 figure, REVTE

    Decay of the free-theory vacuum of scalar field theory in de Sitter spacetime in the interaction picture

    Full text link
    A free-theory vacuum state of an interacting field theory, e.g. quantum gravity, is unstable at tree level in general due to spontaneous emission of Fock-space particles in any spacetime with no global timelike Killing vectors, such as de Sitter spacetime, in the interaction picture. As an example, the rate of spontaneous emission of Fock-space particles is calculated in phi^4 theory in de Sitter spacetime. It is possible that this apparent spontaneous emission does not correspond to any physical processes because the states are not evolved by the true Hamiltonian in the interaction picture. Nevertheless, the constant spontaneous emission of Fock-space particles in the interaction picture clearly demonstrates that the in- and out-vacuum states are orthogonal to each other as emphasized by Polyakov and that the in-out perturbation theory, which presupposes some overlap between these two vacuum states, is inadequate. Other possible implications of apparent vacuum instability of this kind in the interaction picture are also discussed.Comment: title changed, 7 page

    Low-energy sector quantization of a massless scalar field outside a Reissner-Nordstrom black hole and static sources

    Get PDF
    We quantize the low-energy sector of a massless scalar field in the Reissner-Nordstrom spacetime. This allows the analysis of processes involving soft scalar particles occurring outside charged black holes. In particular, we compute the response of a static scalar source interacting with Hawking radiation using the Unruh (and the Hartle-Hawking) vacuum. This response is compared with the one obtained when the source is uniformly accelerated in the usual vacuum of the Minkowski spacetime with the same proper acceleration. We show that both responses are in general different in opposition to the result obtained when the Reissner-Nordstrom black hole is replaced by a Schwarzschild one. The conceptual relevance of this result is commented.Comment: 12 pages (REVTEX), no figure

    Radiation from a moving Scalar Source

    Full text link
    We study classical radiation and quantum bremsstrahlung effect of a moving point scalar source. Our classical analysis provides another example of resolving a well-known apparent paradox, that of whether a constantly accelerating source radiates or not. Quantum mechanically, we show that for a scalar source with arbitrary motion, the tree level emission rate of scalar particles in the inertial frame equals the sum of emission and absorption rates of zero-energy Rindler particles in the Rindler frame. We then explicitly verify this result for a source undergoing constant proper acceleration.Comment: 15 pages, CU-TP-59
    • …
    corecore